Ortogonal
Ortogonalidad en espacios vectoriales Definición Formalmente, en un espacio vectorial con producto interior V, dos vectores x ∈ V {\displaystyle x\in V} e y ∈ V {\displaystyle y\in V} son ortogonales si el producto escalar de ⟨ x , y ⟩ {\displaystyle \langle x,y\rangle } es cero. Esta situación se denota x ⊥ y {\displaystyle x\perp y} . Además, un conjunto A se dice que es ortogonal a otro conjunto B, si cualquiera de los vectores de A es ortogonal a cualquiera de los vectores del conjunto B.
Está viendo el 12% del contenido de este artículo.
Solicite el acceso a su biblioteca para poder consultar nuestros recursos electrónicos.
Ventajas de ser usuario registrado.
Acceso sin restricciones a todo el contenido de la obra.
Sólo información contrastada de prestigiosos sellos editoriales.
Contenidos de renombrados autores y actualizaciones diarias.
La nueva plataforma del Consorcio ofrece una experiencia de búsqueda de fácil manejo y de gran usabilidad. Contiene funciones únicas que permiten navegar y realizar consultas de manera ágil y dinámica.
Convenios especiales: Enseñanza Bibliotecas públicas